Infinity Laplace Equation with Non-trivial Right-hand Side
نویسندگان
چکیده
We analyze the set of continuous viscosity solutions of the infinity Laplace equation −∆∞w(x) = f(x), with generally sign-changing right-hand side in a bounded domain. The existence of a least and a greatest continuous viscosity solutions, up to the boundary, is proved through a Perron’s construction by means of a strict comparison principle. These extremal solutions are proved to be absolutely extremal solutions.
منابع مشابه
Inhomogeneous infinity Laplace equation ✩
We present the theory of the viscosity solutions of the inhomogeneous infinity Laplace equation ∂xi u∂xj u∂ 2 xixj u = f in domains in Rn. We show existence and uniqueness of a viscosity solution of the Dirichlet problem under the intrinsic condition f does not change its sign. We also discover a characteristic property, which we call the comparison with standard functions property, of the visc...
متن کاملA PDE Perspective of The Normalized Infinity Laplacian
The inhomogeneous normalized infinity Laplace equation was derived from the tug-of-war game in [PSSW] with the positive right-hand-side as a running payoff. The existence, uniqueness and comparison with polar quadratic functions were proved in [PSSW] by the game theory. In this paper, the normalized infinity Laplacian, formally written as 4∞u = | 5 u|−2 ∑n i,j=1 ∂xiu∂xju∂ xixju, is defined in a...
متن کاملApplication of Boundera Element Method (Bem) to Two-Dimensional Poisson's Eqation
BEM can be used to solve Poisson's equation if the right hand side of the equation is constant because it can easily be transformed to an equivalent Laplace equation. However, if the right hand side is not constant, then such a treatment is impossible and part of the equation can not be transformed over the boundary, hence, the whole domain has to be discretized. Although this takes away impor...
متن کاملOn the Second-order Convergence of Finite Volume Methods for the Laplace Equation on Delaunay-voronoi Meshes
Abstract. Cell-centered and vertex-centered finite volume schemes for the Laplace equation with homogeneous Dirichlet boundary conditions are considered on triangular meshes and their Voronoi duals. On a two-dimensional convex polygonal domain, it is shown that a suitable combination of the solutions of these two schemes converges with second-order accuracy towards the exact solution in the L n...
متن کاملSecond Order Stability for the Monge-ampère Equation and Strong Sobolev Convergence of Optimal Transport Maps
The aim of this note is to show that Alexandrov solutions of the Monge-Ampère equation, with right hand side bounded away from zero and infinity, converge strongly in W 2,1 loc if their right hand side converge strongly in Lloc. As a corollary we deduce strong W 1,1 loc stability of optimal transport maps.
متن کامل